Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733438

RESUMEN

Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.

3.
Appl Environ Microbiol ; 90(4): e0235523, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38535171

RESUMEN

Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.


Asunto(s)
Chenopodiaceae , Suelo , Suelo/química , Solución Salina , Cloruro de Sodio , Nitrificación , Plantas Tolerantes a la Sal
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365232

RESUMEN

Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems. Here, we report a novel AOA order Candidatus (Ca.) Nitrosomirales which forms a sister lineage to the thermophilic Ca. Nitrosocaldales. Metagenomic and 16S rRNA gene-read mapping demonstrates the abundant presence of Nitrosomirales AOA in various groundwater environments and their widespread distribution across a range of geothermal, terrestrial, and marine habitats. Terrestrial Nitrosomirales AOA show the genetic capacity of using formate as a source of reductant and using nitrate as an alternative electron acceptor. Nitrosomirales AOA appear to have acquired key metabolic genes and operons from other mesophilic populations via horizontal gene transfer, including genes encoding urease, nitrite reductase, and V-type ATPase. The additional metabolic versatility conferred by acquired functions may have facilitated their radiation into a variety of subsurface, marine, and soil environments. We also provide evidence that each of the four AOA orders spans both marine and terrestrial habitats, which suggests a more complex evolutionary history for major AOA lineages than previously proposed. Together, these findings establish a robust phylogenomic framework of AOA and provide new insights into the ecology and adaptation of this globally abundant functional guild.


Asunto(s)
Amoníaco , Archaea , Amoníaco/metabolismo , Ecosistema , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Oxidación-Reducción , Filogenia , Suelo , Microbiología del Suelo
5.
Nat Microbiol ; 9(2): 524-536, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297167

RESUMEN

Ammonia-oxidizing microorganisms (AOM) contribute to one of the largest nitrogen fluxes in the global nitrogen budget. Four distinct lineages of AOM: ammonia-oxidizing archaea (AOA), beta- and gamma-proteobacterial ammonia-oxidizing bacteria (ß-AOB and γ-AOB) and complete ammonia oxidizers (comammox), are thought to compete for ammonia as their primary nitrogen substrate. In addition, many AOM species can utilize urea as an alternative energy and nitrogen source through hydrolysis to ammonia. How the coordination of ammonia and urea metabolism in AOM influences their ecology remains poorly understood. Here we use stable isotope tracing, kinetics and transcriptomics experiments to show that representatives of the AOM lineages employ distinct regulatory strategies for ammonia or urea utilization, thereby minimizing direct substrate competition. The tested AOA and comammox species preferentially used ammonia over urea, while ß-AOB favoured urea utilization, repressed ammonia transport in the presence of urea and showed higher affinity for urea than for ammonia. Characterized γ-AOB co-utilized both substrates. These results reveal contrasting niche adaptation and coexistence patterns among the major AOM lineages.


Asunto(s)
Archaea , Bacterias , Archaea/metabolismo , Bacterias/metabolismo , Amoníaco/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Nitrificación , Filogenia , Microbiología del Suelo , Urea/metabolismo
6.
Environ Sci Technol ; 57(48): 19782-19792, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37966898

RESUMEN

Dissolved organic matter (DOM) is involved in numerous biogeochemical processes, and understanding the ecological succession of DOM is crucial for predicting its response to farming (e.g., fertilization) practices. Although plentiful studies have examined how fertilization practice affects the content of soil DOM, it remains unknown how long-term fertilization drives the succession of soil DOM over temporal scales. Here, we investigated the succession of DOM in paddy rice rhizosphere soils subjected to different long-term fertilization treatments (CK: no fertilization; NPK: inorganic fertilization; OM: organic fertilization) along with plant growth. Our results demonstrated that long-term fertilization significantly promoted the molecular chemodiversity of DOM, but it weakened the correlation between DOM composition and plant development. Time-decay analysis indicated that the DOM composition had a shorter halving time under CK treatment (94.7 days), compared to NPK (337.4 days) and OM (223.8 days) treatments, reflecting a lower molecular turnover rate of DOM under fertilization. Moreover, plant development significantly affected the assembly process of DOM only under CK, not under NPK and OM treatments. Taken together, our results demonstrated that long-term fertilization, especially inorganic fertilization, greatly weakens the ecological succession of DOM in the plant rhizosphere, which has a profound implication for understanding the complex plant-DOM interactions.


Asunto(s)
Oryza , Suelo , Suelo/química , Rizosfera , Materia Orgánica Disuelta , Fertilización , Fertilizantes/análisis
7.
Nat Commun ; 14(1): 6482, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838711

RESUMEN

Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.


Asunto(s)
Ecosistema , Bosques , Hongos , Clima , Biodiversidad
8.
Nat Food ; 4(11): 996-1006, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37904026

RESUMEN

Exploiting the potential benefits of plant-associated microbes represents a sustainable approach to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. However, the biogeography and community structure remain largely unknown. Here we constructed a PBB database to couple microbial taxonomy with their plant-beneficial traits and analysed the global atlas of potential PBB from 4,245 soil samples. We show that the diversity of PBB peaks in low-latitude regions, following a strong latitudinal diversity gradient. The distribution of potential PBB was primarily governed by environmental filtering, which was mainly determined by local climate. Our projections showed that fossil-fuel-dependent future scenarios would lead to a significant decline of potential PBB by 2100, especially biocontrol agents (-1.03%) and stress resistance bacteria (-0.61%), which may potentially threaten global food production and (agro)ecosystem services.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Microbiología del Suelo , Bacterias/genética , Plantas
9.
Front Microbiol ; 14: 1141585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007500

RESUMEN

Plant-associated microorganisms are believed to be part of the so-called extended plant phenotypes, affecting plant growth and health. Understanding how plant-associated microorganisms respond to pathogen invasion is crucial to controlling plant diseases through microbiome manipulation. In this study, healthy and diseased (bacterial wilt disease, BWD) tomato (Solanum lycopersicum L.) plants were harvested, and variations in the rhizosphere and root endosphere microbial communities were subsequently investigated using amplicon and shotgun metagenome sequencing. BWD led to a significant increase in rhizosphere bacterial diversity in the rhizosphere but reduced bacterial diversity in the root endosphere. The ecological null model indicated that BWD enhanced the bacterial deterministic processes in both the rhizosphere and root endosphere. Network analysis showed that microbial co-occurrence complexity was increased in BWD-infected plants. Moreover, higher universal ecological dynamics of microbial communities were observed in the diseased rhizosphere. Metagenomic analysis revealed the enrichment of more functional gene pathways in the infected rhizosphere. More importantly, when tomato plants were infected with BWD, some plant-harmful pathways such as quorum sensing were significantly enriched, while some plant-beneficial pathways such as streptomycin biosynthesis were depleted. These findings broaden the understanding of plant-microbiome interactions and provide new clues to the underlying mechanism behind the interaction between the plant microbiome and BWD.

10.
Environ Pollut ; 325: 121443, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921661

RESUMEN

1,2-Dichloroethane (1,2-DCA) is a ubiquitous volatile halogenated organic pollutant in groundwater and soil, which poses a serious threat to the ecosystem and human health. Microbial reductive dechlorination has been recognized as an environmentally-friendly strategy for the remediation of sites contaminated with 1,2-DCA. In this study, we obtained an anaerobic microbiota derived from 1,2-DCA contaminated groundwater, which was able to sustainably convert 1,2-DCA into non-toxic ethylene with an average dechlorination rate of 30.70 ± 11.06 µM d-1 (N = 6). The microbial community profile demonstrated that the relative abundance of Dehalococcoides species increased from 0.53 ± 0.08% to 44.68 ± 3.61% in parallel with the dechlorination of 1,2-DCA. Quantitative PCR results showed that the Dehalococcoides species 16S rRNA gene increased from 2.40 ± 1.71 × 108 copies∙mL-1 culture to 4.07 ± 2.45 × 108 copies∙mL-1 culture after dechlorinating 110.69 ± 30.61 µmol of 1,2-DCA with a growth yield of 1.55 ± 0.93 × 108 cells per µmol Cl- released (N = 6), suggesting that Dehalococcoides species used 1,2-DCA for organohalide respiration to maintain cell growth. Notably, the relative abundances of Methanobacterium sp. (p = 0.0618) and Desulfovibrio sp. (p = 0.0001995) also increased significantly during the dechlorination of 1,2-DCA and were clustered in the same module with Dehalococcoides species in the co-occurrence network. These results hinted that Dehalococcoides species, the obligate organohalide-respiring bacterium, exhibited potential symbiotic relationships with Methanobacterium and Desulfovibrio species. This study illustrates the importance of microbial interactions within functional microbiota and provides a promising microbial resource for in situ bioremediation in sites contaminated with 1,2-DCA.


Asunto(s)
Chloroflexi , Dehalococcoides , Humanos , Dehalococcoides/genética , ARN Ribosómico 16S/genética , Ecosistema , Biodegradación Ambiental , Etilenos , Chloroflexi/genética
11.
Environ Res ; 220: 115133, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563984

RESUMEN

Gut microbiota and their metabolites are increasingly recognized for their crucial role in regulating the health and growth of the host. The mechanism by which the gut microbiome affects the growth rate of fish (Cyprinus carpio) in the rice-fish coculture system, however, remains unclear. In this study, the gut contents of the fast-growing and slow-growing (FG and SG) carp were collected from the rice-fish coculture system for both the fish gut microbiome and metabolome analyses. High throughput 16 S rRNA gene sequencing showed that the overall gut microbiota of FG group was distinct from that of SG group. For example, the cyanobacteria were highly enriched in the guts of SG carp (18.61%), in contrast, they only represented a minor fraction of gut microbiota for FG group (<0.20%). The liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis revealed that 191 identified metabolites mostly located in 18 KEGG pathways were differentially present between the two groups, of which more than 50% of these metabolites were involved in lipid and amino acids metabolism. Compared with the FG group, the gut microbiota of SG group significantly enriched the metabolic pathways involved in the steroid (hormone) biosynthesis, whereas reducing those associated with beta-alanine metabolism, biosynthesis of unsaturated fatty acids and bile secretion. The enrichment and depletion of these metabolic pathways resulted in an increase in steroid metabolites and a decrease in the concentration of spermidine, which may have a major impact on the growth rate of carp. The metabolome results were further supported by the predicated KEGG functions of the gut microbiomes of the two groups, pointing out that the gut microbiota could substantially affect the growth of fish via their unique metabolic functions. Together, our integrated fish gut microbiome and metabolome analysis has substantial implications for the development of engineered microbiome technologies in aquaculture.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Microbiota , Animales , Metaboloma , Microbiota/genética , Metabolómica/métodos , Esteroides , Hormonas , ARN Ribosómico 16S/genética
12.
Plant Biotechnol J ; 21(2): 342-353, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36278914

RESUMEN

The widespread application of isoproturon (IPU) can cause serious pollution to the environment and threaten ecological functions. In this study, the IPU bacterial N-demethylase gene pdmAB was transferred and expressed in the chloroplast of soybean (Glycine max L. 'Zhonghuang13'). The transgenic soybeans exhibited significant tolerance to IPU and demethylated IPU to a less phytotoxic metabolite 3-(4-isopropylphenyl)-1-methylurea (MDIPU) in vivo. The transgenic soybeans removed 98% and 84% IPU from water and soil within 5 and 14 days, respectively, while accumulating less IPU in plant tissues compared with the wild-type (WT). Under IPU stress, transgenic soybeans showed a higher symbiotic nitrogen fixation performance (with higher total nodule biomass and nitrogenase activity) and a more stable rhizosphere bacterial community than the WT. This study developed a transgenic (TS) soybean capable of efficiently removing IPU from its growing environment and recovering a high-symbiotic nitrogen fixation capacity under IPU stress, and provides new insights into the interactions between rhizosphere microorganisms and TS legumes under herbicide stress.


Asunto(s)
Glycine max , Suelo , Biodegradación Ambiental , Glycine max/genética , Glycine max/metabolismo , Compuestos de Fenilurea/metabolismo
13.
Microorganisms ; 10(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422302

RESUMEN

Candidate Phyla Radiation (CPR) bacteria is a bacterial division composed mainly of candidate phyla bacteria with ultra-small cell sizes, streamlined genomes, and limited metabolic capacity, which are generally considered to survive in a parasitic or symbiotic manner. Despite their wide distribution and rich diversity, CPR bacteria have received little attention until recent years, and are therefore poorly understood. This review systematically summarizes the history of CPR research, the parasitic/symbiotic lifestyle, and the ecological distribution and unique metabolic features of CPR bacteria, hoping to provide guidance for future ecological and physiological research on CPR bacteria.

14.
Environ Microbiol ; 24(10): 4946-4959, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36053866

RESUMEN

Plastic pollution and antibiotic resistance are two emerging environmental and human health crises today. Although it was revealed that microplastics can serve as vectors for the dissemination of antibiotic resistance, it is still unclear how the nanoplastics influence the horizontal transfer of antibiotic resistance genes (ARGs). Herein, we firstly compared the effect of polystyrene (PS) micro/nanoplastics on the transformation of plasmid-borne ARG, using a transformation model consisting of plasmid pUC19 (ampR ) and Escherichia coli DH5α (recipient). Due to its size effect, PS nanoplastics (10-500 mg/L) significantly enhanced the transformation efficiency (2.8-5.4 folds) and frequency (3.2-8.4 folds) of exogenous ampR into E. coli, while PS microplastics exerted no influence. The detailed mechanisms were found that nanoplastics induced reactive oxygen species (ROS) overproduction, activated SOS response, increased cell membrane permeability and changed the secretion systems, thereby facilitating the uptake of exogenous DNA by bacteria. Moreover, the co-presences of nanoplastics with humic acid or Fe3+ relieved to some extent, but did not completely alleviate the promoting effect of nanoplastics on plasmid transformation. Our findings suggest that the risk of nanoplastics on promoting the dissemination of antibiotic resistance should not be neglected, and further studies are needed to investigate such risk in complex environments.


Asunto(s)
Escherichia coli , Microplásticos , Adenosina Monofosfato , Ampicilina/farmacología , Resistencia a la Ampicilina , Antibacterianos/farmacología , Escherichia coli/genética , Humanos , Sustancias Húmicas , Plásmidos/genética , Plásticos , Poliestirenos/farmacología , Especies Reactivas de Oxígeno
15.
Environ Res ; 215(Pt 3): 114420, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36167116

RESUMEN

Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.


Asunto(s)
Contaminantes Ambientales , Microbiota , Anaerobiosis , Benceno/química , Derivados del Benceno , Biodegradación Ambiental , Electrones , Hierro , Metano , Nitratos/química , Oxidantes , Suelo , Sulfatos/química , Tolueno/química , Xilenos
16.
Environ Microbiol ; 24(11): 5123-5138, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35876302

RESUMEN

Genetic redundancy is prevalent in organisms and plays important roles in the evolution of biodiversity and adaptation to environmental perturbation. However, selective advantages of genetic redundancy in overcoming metabolic disturbance due to structural analogues have received little attention. Here, functional divergence of the three 4-hydroxybenzoate 3-hydroxylase (PHBH) genes (phbh1~3) was found in Pigmentiphaga sp. strain H8. The genes phbh1/phbh2 were responsible for 3-bromo-4-hydroxybenzoate (3-Br-4-HB, an anthropogenic pollutant) catabolism, whereas phbh3 was primarily responsible for 4-hydroxybenzoate (4-HB, a natural intermediate of lignin) catabolism. 3-Br-4-HB inhibited 4-HB catabolism by competitively binding PHBH3 and was toxic to strain H8 cells especially at high concentrations. The existence of phbh1/phbh2 not only enabled strain H8 to utilize 3-Br-4-HB but also ensured the catabolic safety of 4-HB. Molecular docking and site-directed mutagenesis analyses revealed that Val199 and Phe384 of PHBH1/PHBH2 were required for the hydroxylation activity towards 3-Br-4-HB. Phylogenetic analysis indicated that phbh1 and phbh2 originated from a common ancestor and evolved specifically in strain H8 to adapt to 3-Br-4-HB-contaminated habitats, whereas phbh3 evolved independently. This study deepens our understanding of selective advantages of genetic redundancy in prokaryote's metabolic robustness and reveals the factors driving the divergent evolution of redundant genes in adaptation to environmental perturbation.


Asunto(s)
4-Hidroxibenzoato-3-Monooxigenasa , Filogenia , Simulación del Acoplamiento Molecular , 4-Hidroxibenzoato-3-Monooxigenasa/química , 4-Hidroxibenzoato-3-Monooxigenasa/genética , 4-Hidroxibenzoato-3-Monooxigenasa/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ecosistema
17.
Microb Ecol ; 83(2): 424-435, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33970312

RESUMEN

Ammonia oxidising archaea (AOA) are ecologically important nitrifiers in acidic agricultural soils. Two AOA phylogenetic clades, belonging to order-level lineages of Nitrososphaerales (clade C11; also classified as NS-Gamma-2.3.2) and family-level lineage of Candidatus Nitrosotaleaceae (clade C14; NT-Alpha-1.1.1), usually dominate AOA population in low pH soils. This study aimed to investigate the effect of different fertilisation histories on community composition and activity of acidophilic AOA in soils. High-throughput sequencing of ammonia monooxygenase gene (amoA) was performed on six low pH agricultural plots originating from the same soil but amended with different types of fertilisers for over 20 years and nitrification rates in those soils were measured. In these fertilised acidic soils, nitrification was likely dominated by Nitrososphaerales AOA and ammonia-oxidising bacteria, while Ca. Nitrosotaleaceae AOA activity was non-significant. Within Nitrososphaerales AOA, community composition differed based on the fertilisation history, with Nitrososphaerales C11 only representing a low proportion of the community. This study revealed that long-term soil fertilisation selects for different acidophilic nitrifier communities, potentially through soil pH change or through direct effect of nitrogen, potassium and phosphorus. Comparative community composition among the differently fertilised soils also highlighted the existence of AOA phylotypes with different levels of stability to environmental changes, contributing to the understanding of high AOA diversity maintenance in terrestrial ecosystems.


Asunto(s)
Amoníaco , Archaea , Archaea/genética , Bacterias/genética , Ecosistema , Fertilización , Nitrificación , Oxidación-Reducción , Filogenia , Suelo/química , Microbiología del Suelo
18.
Front Microbiol ; 12: 731921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512610

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2020.589268.].

19.
Appl Environ Microbiol ; 87(22): e0156221, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34524896

RESUMEN

rac-Dichlorprop, a commonly used phenoxyalkanoic acid herbicide, is frequently detected in environments and poses threats to environmental safety and human health. Microbial consortia are thought to play key roles in rac-dichlorprop degradation. However, the compositions of the microbial consortia involved in rac-dichlorprop degradation remain largely unknown. In this study, DNA stable isotope probing (SIP) and metagenomic analysis were integrated to reveal the key microbial consortium responsible for rac-dichlorprop degradation in a rac-dichlorprop-degrading enrichment. OTU340 (Sphingobium sp.) and OTU348 (Sphingopyxis sp.) were significantly enriched in the rac-[13C]dichlorprop-labeled heavy DNA fractions. A rac-dichlorprop degrader, Sphingobium sp. strain L3, was isolated from the enrichment by a traditional enrichment method but with additional supplementation of the antibiotic ciprofloxacin, which was instructed by metagenomic analysis of the associations between rac-dichlorprop degraders and antibiotic resistance genes. As revealed by functional profiling of the metagenomes of the heavy DNA, the genes rdpA and sdpA, involved in the initial degradation of the (R)- and (S)-enantiomers of dichlorprop, respectively, were mostly taxonomically assigned to Sphingobium species, indicating that Sphingopyxis species might harbor novel dichlorprop-degrading genes. In addition, taxonomically diverse bacterial genera such as Dyella, Sphingomonas, Pseudomonas, and Achromobacter were presumed to synergistically cooperate with the key degraders Sphingobium/Sphingopyxis for enhanced degradation of rac-dichlorprop. IMPORTANCE Understanding of the key microbial consortium involved in the degradation of the phenoxyalkanoic acid herbicide rac-dichlorprop is pivotal for design of synergistic consortia used for enhanced bioremediation of herbicide-contaminated sites. However, the composition of the microbial consortium and the interactions between community members during the biodegradation of rac-dichlorprop are unclear. In this study, DNA-SIP and metagenomic analysis were integrated to reveal that the metabolite 2,4-dichlorophenol degraders Dyella, Sphingomonas, Pseudomonas, and Achromobacter synergistically cooperated with the key degraders Sphingobium/Sphingopyxis for enhanced degradation of rac-dichlorprop. Our study provides new insights into the synergistic degradation of rac-dichlorprop at the community level and implies the existence of novel degrading genes for rac-dichlorprop in nature.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Herbicidas , Marcaje Isotópico , Metagenoma , Ácido 2,4-Diclorofenoxiacético/metabolismo , Bacterias/metabolismo , ADN , Herbicidas/metabolismo
20.
Sci Total Environ ; 767: 145021, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33636794

RESUMEN

Biochar management has been proposed as a promising strategy to mitigate climate change. However, the long-term effects of biochar amendment on soil greenhouse gas (GHG) production and microbial community in forest ecosystems under projected warming remain highly uncertain. In this study, we conducted a 49-day incubation experiment to investigate the impact of biochar application on soil physico-chemical properties, GHG production rates, and microbial community at three temperature levels using a temperate forest soil amended with spruce biochar four years ago. Our results showed that temperature exerted a positive effect on soil CO2, CH4 and N2O production, leading to an increase in total global warming potential by 169% and 87% as temperature rose from 5 to 15 °C and from 15 to 25 °C, respectively, and thus a positive feedback to warming. Moreover, warming was found to reduce soil microbial biomass significantly, but at the same time promote the selection of an activated microbial community towards some phyla, e.g. Acidobacteria and Actinobacteria. We observed that biochar amendment reduced soil CH4 consumption and N2O production in the absence of litter by 106% and 94%, respectively, but did not affect soil CO2 production. While biochar had no significant influence of total global warming potential of forest soil, it could promote climate change mitigation by increasing the total soil carbon content by 26% in the presence of litter. In addition, biochar application was shown to enhance soil available phosphorus and dissolved organic carbon concentrations, as well as soil microbial biomass under a warmer environment. Our findings highlighted the potential of spruce biochar as a soil amendment in improving soil fertility and carbon sequestration in temperate forest over the long term, without creating any adverse climatic impacts associated with soil GHG production.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Agricultura , Dióxido de Carbono/análisis , Carbón Orgánico , Bosques , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis , Suelo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...